Pytorch是一个开源的深度学习框架,提供了创建机器学习(ML)模型的智能方法。本文示例适用于Pytorch 4.1。

今天,我们将看到如何使用PyTorch的三个主要构建块:Module, Sequential and ModuleList。

所有这四个类都包含在内 torch.nn

import torch.nn as nn # nn.Module# nn.Sequential# nn.Module

Module:主要构建块

Module是主要构建块,它定义了所有神经网络的基类。

让我们创建一个经典的CNN分类器作为示例,Python代码如下:

import torch.nn.functional as F class MyCNNClassifier(nn.Module): def __init__(self, in_c, n_classes): super().__init__() self.conv1 = nn.Conv2d(in_c, 32, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(32) self.fc1 = nn.Linear(32 * 28 * 28, 1024) self.fc2 = nn.Linear(1024, n_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.conv2(x) x = self.bn2(x) x = F.relu(x) x = x.view(x.size(0), -1) # flat x = self.fc1(x) x = F.sigmoid(x) x = self.fc2(x) return xmodel = MyCNNClassifier(1, 10)print(model)

这是一个非常简单的分类器,其编码部分使用了两层3x3的convs + batchnorm + relu,解码部分使用了两个线性层。如果您不是PyTorch的新手,您可能以前见过这种类型的代码,但是有两个问题。

如果我们想添加一个层,我们必须再次在__init__和forward函数中编写大量代码。另外,如果我们有一些常见的块,我们想在另一个机器学习模型中使用,例如3x3 conv + batchnorm + relu,我们必须再写一遍。

Sequential: stack和erge层

Sequential是一个模块的容器,可以stacked在一起并同时运行。

您可以注意到我们必须存储到self所有内容中。我们可以Sequential用来改进我们的代码。Python代码如下:

class MyCNNClassifier(nn.Module): def __init__(self, in_c, n_classes): super().__init__() self.conv_block1 = nn.Sequential( nn.Conv2d(in_c, 32, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(32), nn.ReLU() ) self.conv_block2 = nn.Sequential( nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64), nn.ReLU() ) self.decoder = nn.Sequential( nn.Linear(32 * 28 * 28, 1024), nn.Sigmoid(), nn.Linear(1024, n_classes) ) def forward(self, x): x = self.conv_block1(x) x = self.conv_block2(x) x = x.view(x.size(0), -1) # flat x = self.decoder(x) return xmodel = MyCNNClassifier(1, 10)print(model)

你觉得好多了?

你注意到了conv_block1,conv_block2看起来几乎一样吗?我们可以创建一个函数来重新生成nn.Sequential甚至简化代码!

def conv_block(in_f, out_f, *args, **kwargs): return nn.Sequential( nn.Conv2d(in_f, out_f, *args, **kwargs), nn.BatchNorm2d(out_f), nn.ReLU() )

然后我们可以在我们的模块中调用此Python函数

class MyCNNClassifier(nn.Module): def __init__(self, in_c, n_classes): super().__init__() self.conv_block1 = conv_block(in_c, 32, kernel_size=3, padding=1) self.conv_block2 = conv_block(32, 64, kernel_size=3, padding=1) self.decoder = nn.Sequential( nn.Linear(32 * 28 * 28, 1024), nn.Sigmoid(), nn.Linear(1024, n_classes) ) def forward(self, x): x = self.conv_block1(x) x = self.conv_block2(x) x = x.view(x.size(0), -1) # flat x = self.decoder(x) return xmodel = MyCNNClassifier(1, 10)print(model)

更干净!conv_block1和conv_block2几乎一样!我们可以使用nn.Sequential来merge他们

class MyCNNClassifier(nn.Module): def __init__(self, in_c, n_classes): super().__init__() self.encoder = nn.Sequential( conv_block(in_c, 32, kernel_size=3, padding=1), conv_block(32, 64, kernel_size=3, padding=1) ) self.decoder = nn.Sequential( nn.Linear(32 * 28 * 28, 1024), nn.Sigmoid(), nn.Linear(1024, n_classes) ) def forward(self, x): x = self.encoder(x) x = x.view(x.size(0), -1) # flat x = self.decoder(x) return xmodel = MyCNNClassifier(1, 10)print(model)

我们为机器学习模型分离了逻辑,使其更易于阅读和重用。我们的conv_block函数可以导入并用于其他机器学习模型。

动态Sequential:一次创建多个层

如果我们可以在self.encoder中添加新的层:

self.encoder = nn.Sequential( conv_block(in_c, 32, kernel_size=3, padding=1), conv_block(32, 64, kernel_size=3, padding=1), conv_block(64, 128, kernel_size=3, padding=1), conv_block(128, 256, kernel_size=3, padding=1), )

如果我们可以将尺寸定义为数组并自动创建所有层而不编写每个层,那会不会很好?幸运的是,我们可以创建一个数组并将其传递给Sequential

class MyCNNClassifier(nn.Module): def __init__(self, in_c, n_classes): super().__init__() self.enc_sizes = [in_c, 32, 64] conv_blocks = [conv_block(in_f, out_f, kernel_size=3, padding=1) for in_f, out_f in zip(self.enc_sizes, self.enc_sizes[1:])] self.encoder = nn.Sequential(*conv_blocks) self.decoder = nn.Sequential( nn.Linear(32 * 28 * 28, 1024), nn.Sigmoid(), nn.Linear(1024, n_classes) ) def forward(self, x): x = self.encoder(x) x = x.view(x.size(0), -1) # flat x = self.decoder(x) return xmodel = MyCNNClassifier(1, 10)print(model)

我们创建了一个self.enc_sizes包含编码器大小的数组。然后我们conv_blocks通过迭代大小来创建一个数组。因为我们必须每层给booth一个in size和一个outsize。

为了清楚起见,请看下面的例子:

sizes = [1, 32, 64] for in_f,out_f in zip(sizes, sizes[1:]): print(in_f,out_f)

1 32 32 64

然后,由于Sequential不接受列表,我们使用*运算符对其进行分解。

现在,如果我们只想添加大小,我们可以轻松地在列表中添加新数字。将大小作为参数是常见的做法。

class MyCNNClassifier(nn.Module): def __init__(self, in_c, enc_sizes, n_classes): super().__init__() self.enc_sizes = [in_c, *enc_sizes] conv_blokcs = [conv_block(in_f, out_f, kernel_size=3, padding=1) for in_f, out_f in zip(self.enc_sizes, self.enc_sizes[1:])] self.encoder = nn.Sequential(*conv_blokcs) self.decoder = nn.Sequential( nn.Linear(32 * 28 * 28, 1024), nn.Sigmoid(), nn.Linear(1024, n_classes) ) def forward(self, x): x = self.encoder(x) x = x.view(x.size(0), -1) # flat x = self.decoder(x) return xmodel = MyCNNClassifier(1, [32,64, 128], 10)print(model)

我们可以为解码器部分做同样的事情

def dec_block(in_f, out_f): return nn.Sequential( nn.Linear(in_f, out_f), nn.Sigmoid() ) class MyCNNClassifier(nn.Module): def __init__(self, in_c, enc_sizes, dec_sizes, n_classes): super().__init__() self.enc_sizes = [in_c, *enc_sizes] self.dec_sizes = [32 * 28 * 28, *dec_sizes] conv_blokcs = [conv_block(in_f, out_f, kernel_size=3, padding=1) for in_f, out_f in zip(self.enc_sizes, self.enc_sizes[1:])] self.encoder = nn.Sequential(*conv_blokcs) dec_blocks = [dec_block(in_f, out_f) for in_f, out_f in zip(self.dec_sizes, self.dec_sizes[1:])] self.decoder = nn.Sequential(*dec_blocks) self.last = nn.Linear(self.dec_sizes[-1], n_classes) def forward(self, x): x = self.encoder(x) x = x.view(x.size(0), -1) # flat x = self.decoder(x) return xmodel = MyCNNClassifier(1, [32,64], [1024, 512], 10)print(model)

我们遵循相同的模式,我们为解码部分创建一个新的块,线性+ sigmoid,然后我们传递一个大小的数组。我们不得不添加一个,self.last因为我们不想激活输出

现在,我们甚至可以将我们的机器学习模型分解为两个!编码器+解码器

class MyEncoder(nn.Module): def __init__(self, enc_sizes): super().__init__() self.conv_blokcs = nn.Sequential(*[conv_block(in_f, out_f, kernel_size=3, padding=1) for in_f, out_f in zip(enc_sizes, enc_sizes[1:])]) def forward(self, x): return self.conv_blokcs(x) class MyDecoder(nn.Module): def __init__(self, dec_sizes, n_classes): super().__init__() self.dec_blocks = nn.Sequential(*[dec_block(in_f, out_f) for in_f, out_f in zip(dec_sizes, dec_sizes[1:])]) self.last = nn.Linear(dec_sizes[-1], n_classes) def forward(self, x): return self.dec_blocks() class MyCNNClassifier(nn.Module): def __init__(self, in_c, enc_sizes, dec_sizes, n_classes): super().__init__() self.enc_sizes = [in_c, *enc_sizes] self.dec_sizes = [32 * 28 * 28, *dec_sizes] self.encoder = MyEncoder(self.enc_sizes) self.decoder = MyDecoder(dec_sizes, n_classes) def forward(self, x): x = self.encoder(x) x = x.flatten(1) # flat x = self.decoder(x) return xmodel = MyCNNClassifier(1, [32,64], [1024, 512], 10)print(model)

请注意,MyEncoder和MyDecoder也有可能是返回nn.Sequential函数。我更喜欢使用第一个模型用于模型,第二个模式用于构建块。

通过将我们的模块扩展到子模块中,可以更轻松地共享代码,对其进行调试和测试。

ModuleList:我们需要迭代的时候

ModuleList允许您存储Module为列表。当您需要遍历层并存储/使用某些信息(如U-net)时,它非常有用。

Sequential的主要区别在于ModuleList没有forward 方法,因此内部层没有连接。假设我们需要解码器中每一层的每个输出,我们可以将其存储为:

class MyModule(nn.Module): def __init__(self, sizes): super().__init__() self.layers = nn.ModuleList([nn.Linear(in_f, out_f) for in_f, out_f in zip(sizes, sizes[1:])]) self.trace = [] def forward(self,x): for layer in self.layers: x = layer(x) self.trace.append(x) return xmodel = MyModule([1, 16, 32])import torch model(torch.rand((4,1))) [print(trace.shape) for trace in model.trace]

torch.Size([4, 16]) torch.Size([4, 32]) [None, None]

ModuleDict:我们需要选择的时候

如果我们想在conv_block中切换到LearkyRelu呢?我们可以使用ModuleDict创建一个Module字典,并在需要时动态切换

def conv_block(in_f, out_f, activation='relu', *args, **kwargs): activations = nn.ModuleDict([ ['lrelu', nn.LeakyReLU()], ['relu', nn.ReLU()] ]) return nn.Sequential( nn.Conv2d(in_f, out_f, *args, **kwargs), nn.BatchNorm2d(out_f), activations[activation] )print(conv_block(1, 32,'lrelu', kernel_size=3, padding=1))print(conv_block(1, 32,'relu', kernel_size=3, padding=1))

最终实施

Python代码如下:

def conv_block(in_f, out_f, activation='relu', *args, **kwargs): activations = nn.ModuleDict([ ['lrelu', nn.LeakyReLU()], ['relu', nn.ReLU()] ]) return nn.Sequential( nn.Conv2d(in_f, out_f, *args, **kwargs), nn.BatchNorm2d(out_f), activations[activation] ) def dec_block(in_f, out_f): return nn.Sequential( nn.Linear(in_f, out_f), nn.Sigmoid() ) class MyEncoder(nn.Module): def __init__(self, enc_sizes, *args, **kwargs): super().__init__() self.conv_blokcs = nn.Sequential(*[conv_block(in_f, out_f, kernel_size=3, padding=1, *args, **kwargs) for in_f, out_f in zip(enc_sizes, enc_sizes[1:])]) def forward(self, x): return self.conv_blokcs(x) class MyDecoder(nn.Module): def __init__(self, dec_sizes, n_classes): super().__init__() self.dec_blocks = nn.Sequential(*[dec_block(in_f, out_f) for in_f, out_f in zip(dec_sizes, dec_sizes[1:])]) self.last = nn.Linear(dec_sizes[-1], n_classes) def forward(self, x): return self.dec_blocks() class MyCNNClassifier(nn.Module): def __init__(self, in_c, enc_sizes, dec_sizes, n_classes, activation='relu'): super().__init__() self.enc_sizes = [in_c, *enc_sizes] self.dec_sizes = [32 * 28 * 28, *dec_sizes] self.encoder = MyEncoder(self.enc_sizes, activation=activation) self.decoder = MyDecoder(dec_sizes, n_classes) def forward(self, x): x = self.encoder(x) x = x.flatten(1) # flat x = self.decoder(x) return xmodel = MyCNNClassifier(1, [32,64], [1024, 512], 10, activation='lrelu')print(model)

结论

使用Module时,当您有由多个小块组成的大块时Sequential想要从层创建小块时使用使用ModuleList,当您需要遍历某些层或构建块并执行某些操作时ModuleDict当您需要参数化机器学习模型的某些块时使用,例如激活函数

查看原文 >>
相关文章