责编丨迦溆

人的大脑中约含有100亿个神经元,它们通过神经突触这一个独特而又基本的结构实现信息传递交流和整合。突触前神经元释放的神经递质,进入突触间隙之后会与定位于突触后膜的神经递质受体相结合,引起突触后神经元活性变化,从而实现神经信息的跨细胞传递。这一过程的调控异常被认为是神经精神疾病发生的重要原因之一,也是相关疾病干预治疗的重要靶点。

在大脑内,谷氨酸是主要的兴奋性神经递质传递,而其所对应的谷氨酸受体在神经元突触部位的表达水平,则是突触信息传递的效率和神经网络活性的重要决定因素之一。谷氨酸受体在神经元中需要转运至细胞膜,以及定位到突触后膜,这对于大脑行使正常生理功能过程至关重要。

KAR型谷氨酸受体(kainate receptors)在中枢神经系统中发挥重要调节功能,与多种神经精神疾病的发生发展密切相关【1,2】。但是相对于广泛研究的AMPA型(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor, α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体)和NMDA型谷氨酸受体(N-methyl-D-aspartic acid receptor,N-甲基-D-天冬氨酸受体),我们对KAR受体的调控机制还知之甚少。

盛能印博士在加州大学旧金山分校博后期间主要从事KAR受体相关研究,并在以往工作中取得了一系列研究成果【3-5】。这些研究发现,其关键性亚基成员GluK1和GluK2虽然同源性很强,但在神经元中的转运活性是完全不同的,GluK1缺乏自主转运能力,而GluK2具有很强的自主转运能力。GluK1的细胞膜和突触定位均依赖于其辅基Neto蛋白,而GluK2的转运过程则不受Neto蛋白的调控。此外,这两种受体转运能力的差异是由它们自身细胞外氨基端功能结构域(ATR)所决定的,而ATR也介导了Neto蛋白对GluK1和GluK2不同调控作用。长期以来,AMPAR和NMDAR受体的胞内羧基端结构域(CTD)是相关研究的重点,被认为是介导谷氨酸受体与细胞内其他蛋白相互作用的关键部件。而盛能印博士的相关研究,以及其他实验室工作【6,7】,表明对于KAR受体,其胞外区域对其转运调控过程则更为关键。然而,对于其中的具体调控元件及作用机制,仍然是未解之谜。

近日,中国科学院昆明动物研究所盛能印课题组与南京大学模式动物研究所石云课题组就上述科学问题展开深入合作,发现了信号肽调控谷氨酸受体在神经细胞中转运活性的这一全新的、非经典功能和作用机制,相关最新研究成果以Signal peptide represses GluK1 surface and synaptic trafficking through binding to amino-terminal domain为题在线发表于Nature Communications。

为了解析KAR受体的转运调控机制,依据GluK1和GluK2蛋白结构的相似性,研究人员构建一系列嵌合型突变受体,利用电生理膜片钳技术,在海马培养脑片的兴奋性CA1神经元中分析这些KAR突变受体的突触传递活性。在研究过程中,他们意外发现GluK1的信号肽发挥着关键性调控作用。当将GluK1受体的信号肽替换为GluK2信号肽时,GluK1受体则成功定位于突触后膜,并且该GluK1(SPGluK2)突变受体能够成倍的增强突触后电流大小,其幅度与野生型GluK2类似。研究人员推测,该现象存在两种可能性:第一、GluK2的“超级”信号肽赋予了GluK1额外的突触转运能力;第二、GluK1信号抑制了其本身所具备的突触后膜转运能力。为了区分这两种可能性,他们首先利用GluA1受体的“弱”信号肽,因为有研究表明在神经元中表达GluA1并不能增强突触活性,结果发现所构建的GluK1(SPGluK1)受体同样可以增强突触电流大小。更为直接的实验证据是,当将GluK1的信号肽和GluK1(SPGluK2)共同表达在同一个神经元中, GluK1(SPGluK2)受体的增强突触活性的能力则被完全抑制,表明GluK1的信号肽对于GluK1的突触定位具有反式抑制作用。

有研究表明,在某些GPCR受体中,信号肽不被切割以发挥调控作用【8】。因此,研究人员通过构建不同的带有分子标签的受体突变体,通过生物化学分析,发现在成熟的GluK1和GluK2受体中,其信号肽均被有效切割。进一步的解析发现,GluK1的信号肽和氨基端结构域(ATD)有着协同效应以发挥抑制作用,缺一不可。若将GluK1的ATD替换为GluK2的对应序列,同样可以解除GluK1信号肽的抑制转运功能。生物化学实验进一步证明GluK1的信号肽是通过与GluK1的ATD直接相互作用,以形成抑制性复合物,该作用机制也在GluK1细胞膜转运过程中发挥作用。因此,该研究发现,GluK1受体的信号肽能够作为非常规配体,与其ATD结构域相互作用,从而调节GluK1受体胞内转运和突触定位过程

传统的观点认为信号肽只是新合成蛋白的胞内定位的编码信号,它只是负责将新合成的肽链导入内质网,以使其进入分泌途径或者定位到细胞膜。一般来说,在内质网膜上,信号肽被信号肽酶从成熟的蛋白质中被切割下来后,其即完成了其生物学功能。然而,该项研究工作发现了GluK1的信号肽除了指导GluK1进入内质网的经典功能之外,释放的信号肽仍与受体相互结合,发挥调控其后续转运活性的非经典作用,这也是在谷氨酸受体的信号肽研究方面的首次发现

据悉,南京大学博士生段桂芳为第一作者,盛能印研究员与石云教授为文章的共同通讯作者。

参考文献

1. Evans, A.J., et al., Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochem Res, 2017.

2. Contractor, A., C. Mulle, and G.T. Swanson, Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci, 2011. 34(3): p. 154-63.

3. Sheng, N., et al., Neto auxiliary proteins control both the trafficking and biophysical properties of the kainate receptor GluK1. Elife, 2015. 4: p. e11682.

4. Lomash, R.M., et al., Phosphorylation of the kainate receptor (KAR) auxiliary subunit Neto2 at serine 409 regulates synaptic targeting of the KAR subunit GluK1. J Biol Chem, 2017. 292(37): p. 15369-15377.

5. Sheng, N., Y.S. Shi, and R.A. Nicoll, Amino-terminal domains of kainate receptors determine the differential dependence on Neto auxiliary subunits for trafficking. Proc Natl Acad Sci U S A, 2017. 114(5): p. 1159-1164.

6. Matsuda, K., et al., Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins. Neuron, 2016. 90(4): p. 752-67.

7. Straub, C., et al., Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor. Cell Rep, 2016. 16(2): p. 531-544.

8. Rutz, C., W. Klein, and R. Schulein, N-Terminal Signal Peptides of G Protein-Coupled Receptors: Significance for Receptor Biosynthesis, Trafficking, and Signal Transduction. Prog Mol Biol Transl Sci, 2015. 132: p. 267-87.

“BioArt Reports”为“BioArt”旗下新设立的子平台,重点关注国内外重大资讯和研究成果,内容上将会与BioArt主平台互为补充,关注请长按上方二维码。投稿、合作、转载授权事宜请联系微信ID:bioartbusiness或邮箱:[email protected]

查看原文 >>
相关文章