npj: 成全原子怪癖—单打独斗胜过携手共进

单原子(SA)催化剂是含分散在载体表面、孤立存在的单金属原子,是提高原子催化效率的终极代表。SA催化剂可望实现较高的选择性、可调的高活性和独特的金属配位环境等催化性能。现在,作为非均相催化的新领域,SA催化剂是诸多反应(包括氧化、氢化、电催化等)的新前沿领域,已引起极大关注。然而,由于其过量的表面自由能,SA在升温时趋于聚集成颗粒,这便是热失活或烧结现象。因此,最近的研究试图通过在800~1200°C不同载体(如TiO2、CeO2、FeOx、氮掺杂碳和碳纳米纤维)上形成金属-载体强相互作用,来提高SAs的热稳定性。其中的一些实验在高温下观察到了从纳米团簇到SA的反常转变。然而,鉴于SA形成于原子尺度、转化又发生于毫秒之间,其反常分散现象背后的机理仅通过实验探索恐难以深入揭示,势必要通过对NP-to-SA过程的全面原子模拟来破译这种潜在的机制,以捕获在短时间内发生的关键原子尺度事件。


来自美国马里兰大学的李腾教授与西安交通大学申胜平教授的合作研究,利用分子动力学方法模拟了碳材料表面的纳米金颗粒在高温下向单原子演化的过程。这项研究考虑了碳表面的空位浓度对单原子形成的影响,并由此分析了单原子的形成机理,而且进一步考察了单原子在高温下的热稳定性和催化性能。这项研究发现,碳材料表面的空位使碳原子的悬挂键与金原子形成共价键,而增加碳材料表面的空位能够促进单原子的完全分散。进一步研究还发现,金单原子催化甲烷氧化的效率可以高达金纳米颗粒催化效率的4倍。


该文近期发表于npj Computational Materials 6: 23 (2020),英文标题与摘要如下,点击https://www.nature.com/articles/s41524-020-0292-y可以自由获取论文PDF。


npj: 成全原子怪癖—单打独斗胜过携手共进


Stabilizing mechanism of single-atom catalysts on a defective carbon surface


Lianping Wu, Shuling Hu, Wenshan Yu, Shengping Shen, Teng Li


Single-atom (SA) catalysts represent the ultimate limit of atom use efficiency for catalysis. Promising experimental progress in synthesizing SA catalysts aside, the atomic scale transformation mechanism from metal nanoparticles (NPs) to metal SAs and the stabilization mechanism of SA catalysts at high temperature remain elusive. Through systematic molecular dynamics simulations, for the first time, we reveal the atomic scale mechanisms associated with the transformation of a metal NP into an array of stable SAs on a defective carbon surface at a high temperature, using Au as a model material. Simulations reveal the pivotal role of defects in the carbon surface in trapping and stabilizing the Au-SAs at high temperatures, which well explains previous experimental observations. Furthermore, reactive simulations demonstrate that the thermally stable Au-SAs exhibit much better catalyst activity than Au-NPs for the methane oxidation at high temperatures, in which the substantially reduced energy barriers for oxidation reaction steps is the key. Findings in the present study offer mechanistic and quantitative guidance for material selection and optimal synthesis conditions to stabilize metal SA catalysts at high temperatures.


npj: 成全原子怪癖—单打独斗胜过携手共进

相关文章