PyTorch入門代碼學習-ImageNET訓練的main函數(代碼入門)

文章說明:本人學習pytorch/examples/ImageNET/main()理解

實驗室的小夥伴剛入門的時候都被前輩們要求閱讀這份代碼,這裏我將自己的閱讀筆記分享給大家,希望能對大家學習有一點幫助。

代碼:

# -*- coding: utf-8 -*-import argparse # 命令行解釋器相關程序,命令行解釋器import os # 操作系統文件相關import shutil # 文件高級操作import time # 調用時間模塊import torchimport torch.nn as nnimport torch.nn.parallelimport torch.backends.cudnn as cudnn # gpu 使用import torch.distributed as dist # 分佈式(pytorch 0.2)import torch.optim # 優化器import torch.utils.dataimport torch.utils.data.distributedimport torchvision.transforms as transformsimport torchvision.datasets as datasetsimport torchvision.models as models# name中若爲小寫且不以‘——’開頭,則對其進行升序排列model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) # callable功能爲判斷返回對象是否可調用(即某種功能)。# 創建argparse.ArgumentParser對象parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')# 添加命令行元素parser.add_argument('data', metavar='DIR', help='path to dataset')parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)')parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)')parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run')parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)')parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate')parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)')parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)')parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model')parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes')parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training')parser.add_argument('--dist-backend', default='gloo', type=str, help='distributed backend')# 定義參數best_prec1 = 0# 定義主函數main()def main(): global args, best_prec1 # 使用函數parse_args()進行參數解析,輸入默認是sys.argv[1:], # 返回值是一個包含命令參數的Namespace,所有參數以屬性的形式存在,比如args.myoption。 args = parser.parse_args()########## 使用多播地址進行初始化 args.distributed = args.world_size > 1 if args.distributed: dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size)##### step1: create model and set GPU # 導入pretrained model 或者創建model if args.pretrained: # format 格式化表達字符串,上述默認arch爲resnet18 print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) else: print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() # 分佈式運行,可實現在多塊GPU上運行 if not args.distributed: if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): # 批處理,多GPU默認用dataparallel使用在多塊gpu上 model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() else: # Wrap model in DistributedDataParallel (CUDA only for the moment) model.cuda() model = torch.nn.parallel.DistributedDataParallel(model)##### step2: define loss function (criterion) and optimizer # 使用交叉熵損失函數 criterion = nn.CrossEntropyLoss().cuda() # optimizer 使用 SGD + momentum # 動量,默認設置爲0.9 optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, # 權值衰減,默認爲1e-4 weight_decay=args.weight_decay) # 恢復模型(詳見模型存取與恢復)####step3:optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): # 判斷返回的是不是文件 print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) # load 一個save的對象 args.start_epoch = checkpoint['epoch'] # default = 90 best_prec1 = checkpoint['best_prec1'] # best_prec1 = 0 model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) # load_state_dict:恢復模型 print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True##### step4: Data loading code base of dataset(have downloaded) and normalize # 從 train、val文件中導入數據 traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') # 數據預處理:normalize: - mean / std normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ImageFolder 一個通用的數據加載器 train_dataset = datasets.ImageFolder( traindir, # 對數據進行預處理 transforms.Compose([ # 將幾個transforms 組合在一起 transforms.RandomSizedCrop(224), # 隨機切再resize成給定的size大小 transforms.RandomHorizontalFlip(), # 概率爲0.5,隨機水平翻轉。 transforms.ToTensor(), # 把一個取值範圍是[0,255]或者shape爲(H,W,C)的numpy.ndarray, # 轉換成形狀爲[C,H,W],取值範圍是[0,1.0]的torch.FloadTensor normalize, ]))####### if args.distributed: # Use a DistributedSampler to restrict each process to a distinct subset of the dataset. train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None###### # train 數據下載及預處理 train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ # 重新改變大小爲`size`,若:height>width`,則:(size*height/width, size) transforms.Scale(256), # 將給定的數據進行中心切割,得到給定的size。 transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) # default workers = 4##### step5: 驗證函數 if args.evaluate: validate(val_loader, model, criterion) # 自定義的validate函數,見下 return##### step6:開始訓練模型 for epoch in range(args.start_epoch, args.epochs): # Use .set_epoch() method to reshuffle the dataset partition at every iteration if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch) # adjust_learning_rate 自定義的函數,見下 # train for one epoch train(train_loader, model, criterion, optimizer, epoch) # evaluate on validation set prec1 = validate(val_loader, model, criterion) # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer' : optimizer.state_dict(), }, is_best)# 定義相關函數# def train 函數def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to train mode model.train() end = time.time() for i, (input, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) target = target.cuda(async=True) input_var = torch.autograd.Variable(input) target_var = torch.autograd.Variable(target) # compute output output = model(input_var) # criterion 爲定義過的損失函數 loss = criterion(output, target_var) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.data[0], input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # 每十步輸出一次 if i % args.print_freq == 0: # default=10 print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, top5=top5))def validate(val_loader, model, criterion): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() for i, (input, target) in enumerate(val_loader): target = target.cuda(async=True) # 這是一種用來包裹張量並記錄應用的操作 """ Attributes: data: 任意類型的封裝好的張量。 grad: 保存與data類型和位置相匹配的梯度,此屬性難以分配並且不能重新分配。 requires_grad: 標記變量是否已經由一個需要調用到此變量的子圖創建的bool值。只能在葉子變量上進行修改。 volatile: 標記變量是否能在推理模式下應用(如不保存歷史記錄)的bool值。只能在葉變量上更改。 is_leaf: 標記變量是否是圖葉子(如由用戶創建的變量)的bool值. grad_fn: Gradient function graph trace. Parameters: data (any tensor class): 要包裝的張量. requires_grad (bool): bool型的標記值. **Keyword only.** volatile (bool): bool型的標記值. **Keyword only.** """ input_var = torch.autograd.Variable(input, volatile=True) target_var = torch.autograd.Variable(target, volatile=True) # compute output output = model(input_var) loss = criterion(output, target_var) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.data[0], input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg# 保存當前節點def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar')# 計算並存儲參數當前值或平均值class AverageMeter(object): # Computes and stores the average and current value """ batch_time = AverageMeter() 即 self = batch_time 則 batch_time 具有__init__,reset,update三個屬性, 直接使用batch_time.update()調用 功能爲:batch_time.update(time.time() - end) 僅一個參數,則直接保存參數值 對應定義:def update(self, val, n=1) losses.update(loss.data[0], input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) 這些有兩個參數則求參數val的均值,保存在avg中##不確定## """ def __init__(self): self.reset() # __init__():reset parameters def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count# 更新 learning_rate :每30步,學習率降至前的10分之1def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) # args.lr = 0.1 , 即每30步,lr = lr /10 for param_group in optimizer.param_groups: # 將更新的lr 送入優化器 optimizer 中,進行下一次優化 param_group['lr'] = lr# 計算準確度def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) """ maxk = max(topk) # size函數:總元素的個數 batch_size = target.size(0) # topk函數選取output前k大個數 _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return resif __name__ == '__main__': main()

查看原文 >>
相關文章