新浪科技讯 北京时间10月9日消息,据国外媒体报道,太阳系很可能是宇宙诞生之后数代恒星生存消亡之后才孕育形成的,前几代天体的残骸——白矮星、中子星和黑洞,至今仍散落在银河系之中。如果我们在邻近区域发现原始天体残骸物质,能证明太阳系和它们有关系吗?目前我们尚未得出一个明确的结论。

与138亿年“高龄”的宇宙相比,仅有几十亿年历史的太阳系算是一个新生者,宇宙中许多恒星和行星形成时间比太阳更早,其中部分质量较大的恒星已完成了生命历程。当恒星诞生时,它们会以各种各样的质量形式出现,而质量较大恒星的燃料消耗速度最快,很快就会走向灭亡。在它们死亡的时候,它们将大部分恒星物质释放至太空,与其他星际物质混合在一起,可能产生新一代的恒星和行星,同时,死亡的恒星将留下残骸体,例如:白矮星、中子星或者黑洞。

那么这是否意味着当我们发现太阳系附近存在的恒星残骸时,就能将这些恒星残骸视为太阳系的“祖先天体”呢?研究人员米格尔·拉米雷斯(Miguel Ramirez)很想知道这种可能性,他指出,当距离地球最近的中子星以超新星的形式发生爆炸时,是否有可能为我们的行星状星云提供物质,为我们的太阳、行星以及地球生命提供必要的元素?或者更直接地讲,我们是中子星和黑洞的后代吗?

毫无疑问,地球人类文明的崛起,很大程度上得益于前几代的恒星,但是附近的中子星和黑洞真的是我们的宇宙祖先吗?让我们来找出答案吧!

恒星的诞生

当人们仰望晴朗漆黑的夜空时,会看到夜空中最显著的特征就是星星,它们是我们迄今为止所能感知到的最多数量天体,在地球上,人类肉眼大约可以看到6000颗恒星,但实际的恒星数量远不止这些。人们使用简单的双筒望远镜就能观测到10万多颗恒星,如果基于最好的太空探测器,例如:美国宇航局盖亚任务,可以识别发现10亿多颗银河系恒星。

在银河系里,总共大约有4000亿颗恒星,而在可观测的宇宙范围内,恒星数量可多达2万多亿颗,然而,当我们谈及这些恒星从何而来时,它们似乎都有一个共同的起源。

现今宇宙中每颗恒星都是由气体云引力坍缩而形成的,这些气体云是由大爆炸遗留下来的氢和氦混合物,以及前几代恒星残骸重新注入星际介质中形成的。这些恒星是在辐射产生足够能量后才出现,至少有一个天体完全坍缩,足以点燃其核心的核聚变。

形成恒星的最后一步是激活核聚变,仅在温度内核(多数是氢内核)达到400万摄氏度才会自然发生核聚变,将质量大约是7.5倍太阳的天体物质聚集在一个区域,虽然质量各不相同的物体从这些原始大型气体云中形成,但仅有那些越过临界质量阈值的物体,才会最终成为拥有行星系统的恒星。

在形成太阳系的气体云首次出现引力收缩之前,大约需要经历92亿年的宇宙演变,不仅产生了太阳和太阳系所有行星,而且可能还同时产生了数千颗其他恒星。恒星的形成通常不是孤立发生的,而是在巨大爆炸中,数千甚至数十万颗恒星同时诞生。据我们所知,星云中绝大多数恒星都是伴随着大量恒星同时形成的。

我们的太阳是数代恒星的“结晶”

人们可能会想,为什么现今每颗恒星都含有数代原始恒星的部分物质,尤其是如果恒星形成事件导致恒星质量不一,例如:当恒星形成的时候,通常会出现以下情况:一些质量较大的恒星;大量中等质量恒星;大量低质量恒星;甚至还有更多从未真正成为恒星的天体,其中包括:褐矮星和流浪行星。

在这些诞生的恒星中,仅有大约0.1%恒星的质量足够大,能以超新星爆炸的方式结束生命,最终当恒星死亡时仅残留一个黑洞或者中子星。尽管它们比其他恒星质量更大,氢燃料更多,但它们的亮度令人难以置信,消耗燃料的速度也远快于质量较小的恒星。事实上,多数超大质量恒星,其质量是太阳质量的数百倍,它们仅存在几百万年时间,然后耗尽燃料,最终消亡于灾难性的超新星爆炸。

还有大约20%恒星在某种程度上与太阳十分相似,这些恒星会燃烧内核的氢燃料,然后这些内核收缩并加热,将氦聚变成碳,与质量更大的恒星发生过程相同。然而,不同于这些质量更大的恒星,当类太阳恒星耗尽氦,就不会发生进一步的聚变事件,因此类太阳恒星也就不会发生超新星爆炸。

类太阳恒星走向死亡需要几十亿年时间,它们仅是逸散外层,逐渐形成行星状星云,而恒星内核会收缩成白矮星。

相比之下,质量更小的恒星——红矮星,完成它们的生活周期所需的时间比宇宙目前的年龄更长,事实上,尽管现存的恒星中有80%是红矮星,但没有一颗燃烧耗尽所有氢燃料。当大质量恒星生命周期走向消亡时,将丰富周围星际介质,并为后代恒星做出贡献,而小质量恒星仍然存在着。

但第一代恒星就完全不同了,除了氢和氦,没有任何可察觉的物质,这些恒星形成过程非常困难。当然,当时的引力作用和现在是一样的,核聚变也是一样的,触发核聚变的重要物理过程所需的温度和密度阈值也是保持不变的。

然而,仅有氢和氦,这些早期恒星在能量辐射方面效率极低,这意味着它们不能像现代恒星那样收缩至坍缩状态,最终宇宙第一代恒星的质量普遍比现代形成的恒星大许多,天文学家将它们称为超级质量恒星。

而宇宙中近代形成最普遍的“均质恒星”,其质量仅有太阳质量的大约40%,意味着它们的寿命比太阳更长,宇宙第一代恒星出现的“均质恒星”质量是太阳质量的10倍,而它们的寿命仅有数千万年。最终,第一代恒星在数十亿年前就完成了生命周期,它们最终以超新星爆炸结束生命,并为后代恒星的诞生丰富了气体云。

在宇宙中寻找地球根源

现代宇宙中不仅充满着恒星,而且还有大量的恒星残留物——也就是之前几代恒星的尸体,那些之前生存和死亡的恒星,每当我们发现一颗比太阳更古老的白矮星、中子星或者黑洞时,就有一种非零可能性,即它们可能是来自曾经存在的恒星某些物质,它们产生的特殊残留物质构成了当前的太阳、地球和太阳系所有天体。依据白矮星和中子星的演变过程,随着它们年龄的不断增长,其温度和自转会发生变化,我们可以测量单个天体,并估计其具体年龄。然而,对于黑洞我们不能这样进行测量,我们还不知道如何可靠地确定它们的形成年代。

我们现今观测的恒星拥有各种各样的属性特征:恒星质量不一,从0.075倍太阳质量至260倍太阳质量;它们含有比氦更重的元素在0.001%-3%之间不等;我们所观测的最早恒星诞生于130多亿年前。

然而,当诞生新恒星的重大事件发生时,该事件中形成恒星仅是质量存在差异的,但它们有相同比例的重元素(天文学家称之为金属丰度),以及相同的形成年龄。

换句话讲,在我们附近寻找与太阳年龄和金属丰度相近的其他恒星非常重要,如果我们能找到一颗年龄和金属丰度与太阳相近的恒星,即使质量相差很大,也有可能是由相同气体云形成的。你甚至可能有非常聪明的想法测量恒星在星系中的运动方式,相对于太阳和其他恒星,并试图重建46亿年前它们以及地球的位置,从而证实这些天体是否起源于同一星系的相同区域。

同样,你可能会打算在自家后院观测白矮星、中子星和至少46亿年历史的黑洞,如果你能准确地测量它们在太空中的运行状况,就能推算出46亿年前它们在星系中的运行轨迹,那时太阳和其他恒星刚形成不久,甚至它们形成时间更早,观察这些恒星的生存和死亡过程,很可能它们死亡残骸是形成太阳系的气体星云的一部分。

但如果我们遵循这个合理而直观的观测方法,最终得到的答案可能并不可靠,以至于我们还不如采取随机猜测。这种方法存在一个明显的问题:银河系大约有4000亿颗恒星,平均每隔几十万年,每颗恒星会抵达另一颗恒星的“近日点”,其轨道会发生明显变化。随着每一次微小引力“牵引”作用,恒星之前位置的不确定性就会增加,以至于推测1亿年前的恒星运行状况都是不可靠的,更不用说46亿年前或者更久远。

事实上,我们甚至还没有确定任何一颗恒星或者恒星尸体残骸,我们可以自信地认为,它们来自与太阳相同的恒星形成星云或者星团,当大量恒星都从同一个星云中形成时,就会产生星团,其内部的引力相互作用导致它们在大约数亿年的时间内全部分离。许多恒星形成过程中遭受了强烈的引力牵引,以至于被驱逐出银河系。如果没有一幅全面而准确的银河地图,包含着银河系内恒星和恒星残骸,我们就缺乏足够的信息来得出一个合理的结论。

这是天文学和天体物理学等观测科学遭遇的巨大挫折的一部分,我们无法通过控制实验来研究宇宙自然演变,我们仅能获得宇宙当前的一个快照:当这些遥远天体的光线到达我们眼睛的时候。尽管我们了解万有引力原理,也成功地绘制出银河系中的天体,包括它们的三维位置和运动,但重建数十亿年前天体位置远超出了我们当前的技术能力。

我们可以肯定的是,现今宇宙中存在大量中子星、黑洞,甚至白矮星,事实上,它们对我们太阳系中的重元素都有贡献。毫无疑问,从它们的祖先恒星死亡到太阳诞生的时间间隔越长,其中一些物质混入星云的概率就越大,而星云就是我们的起源。

但是否有任何特定天体对太阳系构成具有贡献?目前探寻该谜团远超出了当前人类科技范围,我们是黑洞、中子星和许多其他天体的后代,但如果我们不了解这些天体在银河系曾经的关键时间的位置,就无法确定我们的宇宙祖先是谁。(叶倾城)

相关文章