摘要:第一次是鈷氧化合物,接着是尖晶石,現在是磷酸鐵,Goodenough 的實驗室誕生了三種主要的可商業化的鋰離子電池陰極材料。Goodenough)、英國化學家斯坦利·威廷漢(Stanley Whittingham)和日本化學家吉野彰(Akira Yoshino),以表彰他們發明鋰離子電池方面做出的貢獻。

來源:科研圈

今天,2019年諾貝爾化學獎授予美國固體物理學家約翰·巴尼斯特·古迪納夫(John B。 Goodenough)、英國化學家斯坦利·威廷漢(Stanley Whittingham)和日本化學家吉野彰(Akira Yoshino),以表彰他們發明鋰離子電池方面做出的貢獻。三位科學家將平分諾獎獎金。

約翰·巴尼斯特·古迪納夫(John B。 Goodenough),美國固體物理學家,因爲發明可充電鋰離子電池而聞名於世。1979年古迪納夫發現,將鈷酸鋰(LiCoO2)作爲電池的陰極,將除鋰之外的金屬材料作爲陽極,能夠實現高密度的能量儲存。這一發現爲鋰離子電池的發展鋪平了道路,促成了可充電鋰離子電池的廣泛應用。1983年,古迪納夫、M.Thackeray等人發現錳尖晶石是優良的電池陽極材料。錳尖晶石具有低價、穩定和優良的導電、導鋰性能。其分解溫度高,且氧化性遠低於鈷酸鋰,即使出現短路、過充電,也能夠避免了燃燒、爆炸的危險。1989年,古迪納夫、A.Manthiram發現採用聚電解質(例如,硫酸鹽)的陽極將產生更高的電壓,原因是聚電解質的電磁感應效應。此外,他還與日本學者金森順次郎共同提出“古迪納夫-金森法則”(Goodenough-Kanamori rules)。

古迪納夫1922年7月出生於德國,現年97歲。他於1943年獲得耶魯大學數學學士學位,隨後於1951年和1952年在芝加哥大學獲得物理學碩士和博士學位。他的職業生涯始於麻省理工學院的林肯實驗室,在那裏他爲數字計算機的隨機存取存儲器(RAM)的開發奠定了基礎。離開麻省理工學院後,他於1976年至1986年加入牛津大學擔任教授和無機化學實驗室負責人。正是在這段時間裏,古迪納夫發明了鋰電池。離開牛津大學後,他加入美國得州大學奧斯汀分校,現任該校機械工程和材料科學教授。

斯坦利·威廷漢(Stanley Whittingham),英國化學家,現任紐約州立大學石溪分校化學系傑出教授,紐約州立大學賓厄姆頓分校化學教授、材料研究和材料科學與工程研究所主任、紐約電池和儲能聯合會(NYBEST)董事會副主席。2015年,威廷漢因在鋰離子電池領域的開創性研究獲得科睿維安化學領域引文桂冠獎。2018年因將插層化學應用在儲能材料上的開創性貢獻,當選美國國家工程院院士。

威廷漢1941年出生於英國,1968年在牛津大學取得博士學位。他的研究興趣主要在於尋找能夠推進儲能的新材料,以顯著提高電化學裝置的儲存能力。近年來,他的研究集中在新型無機氧化物材料的製備及其化學和物理性質。最近,他的課題組發現了單相反應在電池電極放電中的關鍵作用。

吉野彰(Yoshino Akira),日本化學家,現代鋰離子電池(LIB)的發明者,曾獲得工程學界最高榮譽全球能源獎與查爾斯·斯塔克·德雷珀獎。1983年,吉野運用鈷酸鋰(LiCoO2;鋰和氧化鈷的化合物,由約翰·B·古迪納夫、水島公一等人發現)開發陰極,運用聚乙炔開發陽極,在1983年製出世界第一個可充電鋰離子電池的原型。1985年克服諸多技術問題,徹底消除金屬鋰,確立了可充電含鋰鹼性鋰離子電池(LIB)的基本概念,並取得日本註冊專利。吉野彰的鋰電池突破以往鎳氫電池的技術限制,開啓了行動電子設備的革命。由於極高的安全性、穩定的能量輸出以及合理的價格,鋰離子電池最終於1991年由SONY首次商業化。2014年,美國國家工程院公認約翰·B·古迪納夫、西義郎、Rachid Yazami和吉野彰爲現代鋰離子電池所做的先驅性和領先性的基礎工作。

吉野彰1948年1月出生於日本大阪。1970年從京都大學工學部石油化學科畢業,1972年獲京都大學工學碩士學位,2005年獲大阪大學工學博士學位。1972年吉野進入旭化成工業株式會社(現·旭化成株式會社),1994年擔任AT&T技術開發部長,1997年擔任旭化成(株)離子二次電池事業推進室室長,2003年升任旭化成Fellow。2005年至今擔任旭化成(株)吉野研究室室長。

看到這篇文章之前,你可能從未聽說過 John Bannister Goodenough。但是你一定知道他研究的東西,事實上你很有可能擁有他的“作品”。

回顧過去六七十年間的科技飛躍:脊髓灰質炎疫苗,宇宙飛船,阿帕網(互聯網前身)等等。除了這些,還有兩項發明對經濟和社會發展影響深遠。如果沒有這項發明,世界各地人們的生活都將完全不同。

第一項重大發明是1947年誕生於貝爾實驗室的晶體管。它的出現改變了電子產品,奠定了全球經濟和現代文明的基礎。第二項發明是鋰電池。1991年索尼公司開始商業化生產鋰電池,隨後鋰電池產品逐漸取代了依賴晶體管的笨重電子設備。

和晶體管不同的是,儘管許多人都認爲鋰電池應該獲諾貝爾獎,它的發明者遲遲沒有得到諾獎的垂青。鋰電池拓寬了晶體管的應用範圍。如果沒有鋰電池,就不會有智能手機,平板電腦和筆記本電腦,以及你現在閱讀這篇文章所用的設備。當然也不會出現蘋果、三星、特斯拉等公司。

1980年,57歲的物理學家 Goodenough 他發明了鋰電池中最重要的部件,鈷氧化物陰極。現在全世界的便攜電子設備都採用這種陰極。

現在,年過九旬的 Goodenough 先生仍每天都去德克薩斯大學奧斯汀分校的小辦公室上班。對此他解釋道,我的工作還沒有完成。在鈷氧化物陰極發明35年後,電動能源汽車在價格上仍然不能與傳統的內燃機汽車競爭。而太陽能和風能發電的儲存成本太高,只能立即使用。我們的前景不容樂觀:雖然現在石油價格低廉,但根據商品價格波動週期規律,其價格必然會上升;同時氣候變化問題也愈演愈烈。

簡而言之,世界需要超級電池。Goodenough 說:“不然的話,我只能說未來我們將通過戰爭來爭奪最後的能源,全球變暖也會發展到不可控制的地步。”

好消息是 Goodenough 正和博士後助手們研究一個新想法。他說:“我想在去世前解決這個問題,我才九十多歲,還有時間。”

電池研究的土壤

電池是使帶電離子在兩個電極間定向移動的裝置。電荷定向移動產生電流供應電器工作。

製作電池需要兩個電極,離子在電極之間移動。電極之間的電解質溶液作爲離子移動的介質。帯負電的電極爲陽極,帯正電爲陰極。當電池放電(如爲電器供電)時陽離子從陽極到陰極運動產生電流。可充電電池在外接電源充電的過程中,陽離子重新回到陽極儲存電能。

幾乎所有電池設計最後都歸結到陽極、陰極及電解質材料的選擇。它們決定了電池的儲電能力和放電速度。

早在1859年,Gaston Planté 就發明了鉛酸電池(使用鉛電極和硫酸電解液)。二十世紀早期,使用鉛酸電池的電動汽車性能似乎優於使用汽油的內燃機汽車。內燃機噪音很大而且很髒,啓動時還要搖動沉重的手柄。相比之下,電動汽車容易操作而且安靜。然而,汽車電子打火裝置等一系列發明使內燃機逐漸佔據優勢。幾十年來,很少人認爲電動汽車會取代內燃機汽車。

商業創新使用電能替代內燃機的想法捲土重來。世界各地的研究者爭相研究電池,希望成爲下一個福特。那時還在MIT工作的 Goodenough 說,一切突然發生了改變,電池的研究不再無聊了。這種狂熱持續到了下個十年,並隨着阿拉伯石油禁運的影響變得越發高漲。

電能重新回到了舞臺,Goodenough 也加入了競爭。在之後的二十年裏,他發明或參與發明了現代電池發展中幾乎所有的主要成果。

第一代鋰電池

Goodenough 在牛津大學工作時,英國化學家 Stan Whittingham 在電池領域取得重大突破。他和斯坦福大學的同事共同發現了在硫化鈦層片之間存儲鋰離子的層狀電極材料。鋰離子可以在電極間來回穿梭,具備充電能力,並且可以在室溫下工作。Wittingham 用化學術語 intercalation(夾層)命名這種存儲方式。

這個消息吸引了廣泛關注。石油巨頭埃克森美孚邀請 Whittingham,依據他在斯坦福的工作,祕密研製新型電池。1976年,埃克森美孚申請了鋰電池發明專利。

在此之前的60年裏,消費類電子產品的標準電池是一次性碳鋅電池。(和它相比,鉛酸電池龐大沉重,只能用於汽車。)同時使用的還有鎳鎘電池。Whittingham 的成果以輕便和電量足的特點超越了這兩種電池。如果研究成功,它將能給更小更便攜的設備供電。

但還有個物理規律擋在前面。鋰電池工作的電化學反應使它容易爆炸。當過充時,電池可能自燃。即便你小心避免了這些問題,電池也會在反覆充放電過程中逐漸衰減。實驗室爆炸和電池衰減這些問題困擾着 Whittingham 的工作。

Goodenough 認爲他能設計出一種更有效、沒有致命缺陷的電池。美孚的電池採用硫化鈦作爲存儲鋰離子的負極材料。而 Goodenough 在麻省理工時候十分熟悉金屬氧化物材料。據他判斷,氧化物電極允許更高電壓的充放電。根據物理學定律,可以儲存更多能量而且不易爆炸。這值得一試。

鈷酸鋰·尖晶石·磷酸鐵

但還有一個潛在的問題。電極之間儲存的可移動的鋰離子越多,電極釋放的能量越多。Goodenough 考慮到,如果鋰在陰極材料中佔了很大一部分,當鋰離子轉移到陽極時,陰極由於失去大量離子中空很可能塌陷。有沒有一種金屬氧化物能夠承受這種影響呢?如果有的話,會是哪一種?這種材料和鋰的比例該是多少?

Goodenough 指導兩個博士後助手有條不紊研究一系列金屬氧化物結構。他讓助手們確定在鋰遊離需要的電壓(他的期望值遠高於 Whittingham 電池的2.2V)以及遊離鋰離子的比例。 

結果顯示電極可以承受4伏的電壓,有一半的鋰遊離出來。這足夠用於可重複使用的電池。在他們測試的氧化物中,助手們發現鈷氧化物是最好最穩定的材料。

1980年,Goodenough 到了牛津四年後,鋰電池鈷氧化物陰極材料成爲巨大突破。這是世界上第一個可以給大型複雜設備供電的鋰離子電池,質量遠超市場上其它電池。這種電池存儲的能量是市場上室溫可充電電池的二到三倍。它不僅體積更小而且性能相同甚至更好。

1991年,索尼結合 Goodenough 的陰極和碳陽極技術生產了世界上第一個商業化可充電鋰離子電池,一夜之間轟動全球。索尼還將鋰離子電池應用於相機。更加輕便美觀的索尼相機很快風靡各地。

索尼的競爭對手也迅速推出了類似的電池和手持相機,並把鋰離子電池應用到筆記本電腦和手機上,形成了每年數十億美元的產業。索尼的突破引發了鋰離子電池研究的熱潮,世界各地的實驗室都開始尋找體積更小、儲能更多的鋰離子電池結構。

在這之前,沒有人預料到這項研究有如此巨大商業市場。

在常用的鈷陰極材料中,原子呈層狀堆積,儲存其中的鋰離子只能在原子層之間運動。Goodenough 認爲尖晶石的原子排列方式允許離子在三維空間中運動,這樣離子就有更多出入電極板的途徑,提高了充放電速度。1982年,Goodenough 牛津大學的博士後助手 Mike Thackeray 發明了更先進的錳尖晶石電極。相比一年前 Goodenough 的鈷氧化物電極,這種電極更安全便宜。

Padhi 和日本 NTT 公司在 Goodenough 實驗室工作的研究人員 Okada 一起尋找更好的尖晶石材料。他們嘗試了不同材料,如鈷、錳和釩,都沒有成功。最後他們的名單裏只剩下一種磷鐵化合物,Goodenough 認爲他們最後只能選擇尖晶石,把這個想法告訴 Padhi 後他就去度假了。

Goodenough 回來後從 Padhi 處得知,正如他的預測,Padhi 的確沒有獲得尖晶石結構。但是他發現了一種自然形成的新型橄欖石結構,併成功從橄欖石結構中提取放回鋰離子。經過檢查,Goodenough 發現結果令人驚歎。這是第三次了!第一次是鈷氧化合物,接着是尖晶石,現在是磷酸鐵,Goodenough 的實驗室誕生了三種主要的可商業化的鋰離子電池陰極材料。

雖然 Padhi 的研究成果被日本 NTT 公司的研究人員 Shigeto Okada 竊取率先在日本申請專利。Goodenough 實驗室被迫捲入與日本NTT公司、MIT Yet-Ming Chiang 教授的A123公司的專利之爭。但業內普遍認爲所有的技術都源於 Goodenough 的實驗室。

壯心不已

一位年過九旬的偉大發明家會得到很多榮譽,Goodenough 也是這樣。他幾乎每年都會被提名諾貝爾獎,通常和他一起提名的還有日本化學家 Akira Yoshino。Akira Yoshino 將美國人發明的陰極和石墨陽極結合,製造了第一個使索尼公司一炮而紅的鋰電池。2013年,Goodenough 獲得美國總統奧巴馬授予的美國國家科學獎章;2009年,他獲得了費米獎。事實上,也有獎項以 Goodenough 命名。2009年起英國皇家化學學會每年在材料化學領域頒發“John B。 Goodenough獎”。

但 Goodenough 似乎想以一個偉大的新發明爲科學生涯畫上句號。他正在研製一種真正能讓電動汽車和內燃機汽車匹敵的超級電池,並希望這種電池可以經濟地存儲風能和太陽能。

他選擇的研究方向涉及電池科學領域裏最難的問題之一:如何用純鋰或者鈉製作電池陽極?如果這種電池研製成功,將比現有的鋰電池多存儲60%的能量。這將立刻使電動車具有和燃油汽車抗衡的實力。多年來,許多科學家都進行了失敗的嘗試。例如70年代 Exxon 公司的 Stan Whittingham 實驗室多次因爲鋰電池研究起火。

儘管 Goodenough 並未闡明新想法,但是他認爲自己已經有了一些頭緒。而且基於他之前的成果,電池領域的學者們並不太懷疑這點。現在就職於美國阿貢國家實驗室、曾在 Goodenough 的指導下發現了錳尖晶石的南非人 Thackeray說:“他仍然很敏銳,他的思想仍在突破”, “這個領域的突破一定是以出人意料的方式出現。Goodenough 就是那種打破常規的人。”

這項研究的賭注很高,Goodenough 駁斥很多與他競爭的研究方法。例如,在他看來,特斯拉的 Elon Musk 只滿足於“把電動汽車賣給好萊塢那些有錢人”,把適用於中產階級的汽車電池研究交給其他科學家。這種控訴不完全正確。雖然Musk 把車以每輛8萬到10萬美元的價格賣給精英階層,但他正在逐步改進電池,承諾到2018年將生產一款3.5萬美元的汽車滿足更大的市場。

Goodenough 同樣看不上那些每年僅僅提高7%~8%電池效率的研究。他說“我們需要一些明顯的進步,而不是每次提高一點點。

包括他自己,沒有人可以肯定 Goodenough 這次會成功,只是他還沒有放棄。超級電池的研製確實很難。Goodenough 說每個人都應該不斷的去嘗試突破。他指出,在毀滅性的能源危機和環境問題來臨之前,我們還有30年的時間研發新電池並使之商業化。他認爲時間足夠。他說:“許多人都在研究鋰電池,這些人都很聰明。我不敢說自己是唯一能解決這個問題的人。”

然而他很可能解決這個問題。這也是那些瞭解他的人一直關注 John Bannister Goodenough 的原因。

相關文章