摘要:來自印度理工學院的Gopal Dixit教授和來自德國馬克斯•普朗克物質結構與動力學研究所的Angel Rubio教授共同領導的科研團隊,基於含時密度泛函理論(TD-DFT)方法,研究了空位對單層六角氮化硼高次諧波發射的影響,證明了這些真實自旋極化缺陷如何影響諧波發射以及原始固體和缺陷固體內諧波的重要區別,展示了自旋極化缺陷的高次諧波(HHG)對固體中自旋極化缺陷進行成像的可能性。人們曾發現一旦從h-BN中除去硼或氮原子,該系統就會在空位附近以非零磁矩旋轉自旋極化。

固體缺陷的準確探測是困擾科學家的經典問題,衆所周知,氣體中高次諧波的產生可以使我們能夠以前所未有的分辨率探測原子和分子中的阿秒電子動力學。不幸的是,這些技術最初是爲原子和分子氣體開發,如果擴展到固體研究,則需要了解其物理學的一些重要方面,之前只從理論的角度作過少量討論。

來自印度理工學院的Gopal Dixit教授和來自德國馬克斯•普朗克物質結構與動力學研究所的Angel Rubio教授共同領導的科研團隊,基於含時密度泛函理論(TD-DFT)方法,研究了空位對單層六角氮化硼高次諧波發射的影響,證明了這些真實自旋極化缺陷如何影響諧波發射以及原始固體和缺陷固體內諧波的重要區別,展示了自旋極化缺陷的高次諧波(HHG)對固體中自旋極化缺陷進行成像的可能性。人們可能認爲,具有硼原子空位或具有氮原子空位的h-BN會表現出相似的HHG光譜,因其都是去除了h-BN中的單個原子。然而情況並非如此,因爲從帶隙狀態可明顯看出硼和氮的空位會導致質子的電子結構不同。

人們曾發現一旦從h-BN中除去硼或氮原子,該系統就會在空位附近以非零磁矩旋轉自旋極化。結果,他們發現對於每個自旋通道和每個空位,由缺陷引起的帶隙狀態是不同的。根據缺陷狀態的順序和佔據率,這些結果很大程度上取決於自旋。可見,通過分析自旋極化譜可理解缺陷狀態,其結果與自旋極化能帶結構一致。該研究建立了缺陷狀態在固體強場動力學中的作用。這一結果爲進一步研究二維和擴展系統中的強場電子動力學,特別是涉及孤立缺陷的強場電子動力學開闢了有趣的前景。

High-harmonic generation from spin-polarised defects in solids

M. S. Mrudul, Nicolas Tancogne-Dejean , Angel Rubio and Gopal Dixit

相關文章