來源 | 科研大匠綜合自Nature/科研大匠之前推文

編輯 | 學術君

2020年7月6日,現任首都醫科大學校長、北大麥戈文研究所創始所長饒毅首次以期刊編輯委員會的成員身份在Cell Research 在線發表題爲“Omission of previous publications by an author should be corrected”(作者遺漏了之前的研究,應予以更正)的文章,在文章中,饒毅提醒讀者:耿美玉團隊已經發表了12篇關於GV971或與GV971相關的論文(其中7篇原創研究,5篇評論文章),但耿美玉團隊2019年10月發表的關於GV-971的研究對於之前發表的這12篇論文卻一篇也沒有引用。同時,饒毅還表達了對該研究“可信性”的“潛在擔憂”。稱“我從來沒有遇到過一種藥物有這麼多的靶點可以治療或緩解一種疾病。”

2019年9月6日,中國科學院上海藥物所耿美玉團隊的一篇研究登上了被稱爲“國刊之光”的Cell Research(今年IF首次突破20)封面。研究題爲“Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression”封面用一句話概括了GV-971的原理:通過重建腸道菌羣,來治療阿爾茨海默病 (AD)。

基於該研究及耿美玉團隊之前相關研究,團隊研發出了被稱爲中國原創,全球首個治療阿爾茨海默病新藥:九期一”,目前,該藥已經上市,定價895元。同時,該藥已經獲FDA批准,可在美國直接進行三期臨牀試驗。詳見:

耿美玉和“九期一” 圖源網絡

中國原創,全球首個,一文梳理被稱爲“國際巨頭研發墳場”的治療阿爾茨海默病獲准上市新藥研發進程來了!中國原創“神藥”定價895元,耿美玉團隊回應五大質疑厲害了!“飽受爭議”的我國原創抗癡呆藥GV-971獲FDA批准!可在美國直接進行三期臨牀試驗

但,質疑之聲四起。

2019年11月28日,饒毅在寫給國自然基金委的一封舉報信中,曾實名舉報耿美玉造假,稱該研究“不造假是不可能的”。見:

首都醫科大學校長饒毅實名舉報李紅良、耿美玉、裴鋼學術造假

此次,饒毅再次以Cell Research 編輯委員會委員身份直接在期刊發文對該研究發出質疑,文章中譯文及英文原文如下:

左:饒毅 右:耿美玉

作爲《細胞研究》的編委會成員,我寫信是爲了向《細胞研究》2019年10月號發表的Wang et al.1關於GV971的論文的讀者提供必要的信息。

值得注意的是,該論文的通訊作者耿美玉博士此前已經發表了12篇關於GV971或與GV971密切相關的論文,包括體內和體外研究。由於這些論文在Wang et al.1中沒有一篇被引用,所以在這裏列出來以便讓讀者知曉。其中7篇爲GV971,2,3,4,5,6,7,8 的原始研究論文,其餘爲評論或相關論文。9,10,11,12,13

總而言之,耿美玉博士先前論文聲稱GV971可以治療帕金森病動物模型2,GV971可以直接綁定到β澱粉樣蛋白肽,4,9,GV971可以保護神經元免受β澱粉樣蛋白的毒性,4,5,GV971可以改善記憶喪失引起的β澱粉樣蛋白肽注入大腦,6,GV971可以直接抑制過氧化氫誘導神經元死亡,3,GV971可以減弱莨菪鹼誘導大鼠記憶障礙,3 GV971可以作用於星形膠質細胞在vitro8 GV971可以與神經元內的蛋白質結合,7。雖然這些作用直接作用於A肽類,或直接作用於神經系統內的神經元或膠質細胞,但Wang等人現在聲稱GV 971通過調節腸道微生物和炎症間接作用於阿爾茨海默病的動物模型。這些效應在藥物靶點、有效位點的位置和治療機制方面是如此顯著地不同,以至於引起了對可信性的潛在擔憂。讀者不應忽視的一點是,儘管通常來說存在不同的靶標意味着副作用,但作者聲稱,GV971的所有靶標和作用都有助於緩解阿爾茨海默病。

在我自己對生物醫學研究歷史的研究中,從中國的生物醫學研究(包括但不限於抗瘧疾藥物青蒿素和抗白血病藥物三氧化二砷的發現,14)到世界各地的生物醫學研究,15 ,我從來沒有遇到過一種藥物有這麼多的靶點可以治療或緩解一種疾病。

As a member of the Editorial Board of Cell Research, I am writing to provide essential information to readers of the Wang et al.1 paper on GV971 published in the October 2019 issue of Cell Research.

It should be noted that the corresponding author of the paper, Dr Meiyu Geng, has previously published 12 papers on or closely related to GV971, including both in vitro and in vivo studies. Because not a single one of these papers was cited in Wang et al.,1 they are listed here so that the readers would be aware of them. Seven papers are original research papers on GV971,2,3,4,5,6,7,8 while others are reviews or related papers.9,10,11,12,13

To summarize, previous papers by Dr Geng have claimed that GV971 can treat Parkinson’s disease in animal models,2 that GV971 can directly bind to amyloid β peptides,4,9 that GV971 can protect neurons from amyloid β toxicity,4,5 that GV971 can ameliorate memory loss caused by amyloid β peptide injection into the brain,6 that GV971 can inhibit H2O2 induced neuronal death directly,3 that GV971 can attenuate scopolamine induced memory impairment in rats,3 that GV971 can act on astrocytes in vitro8 and that GV971 can bind to proteins inside neurons.7 While those effects were directly on the Aβ peptide, or directly on neurons or glial cells, all inside the nervous system, Wang et al.1 now claim that GV 971 works on Alzheimer’s animal model indirectly through regulating gut microbiomes and inflammation. These effects are so strikingly different with regard to drug target(s), location of effective sites and therapeutic mechanisms that they raised a potential concern of credibility. It should not escape the attention of readers that, while usually the existence of diverse targets means side effects, the authors claim all targets and effects of GV971 are helping to alleviate the Alzheimer’s disease.

In my own study of the history of biomedical research, ranging from that in China which includes but is not limited to, the discovery of the antimalaria drug artemisinin and the anti-leukemia drug arsenic trioxide,14 to that in the rest of the world,15 I have never come across a single drug with so many targets for curing or alleviating one disease.

相關論文:

1. Wang, X. et al. Cell Res. 29, 787–803 (2019).

2. Dong, X., Geng, M., Guang, H. & Xie, J. Chin. J. Mar. Drugs 9, 9–12 (2003). (in Chinese).

3. Fan, Y. et al. Neurosci. Lett. 374, 222–226 (2005).

4. Hu, J. et al. J. Pharmacol. Sci. 95, 248–255 (2004).

5. Jiang, R. et al. Acta Pharmacol. Sin. 34, 1585–1591 (2013).

6. Kong, L. et al. Yao Xue Xue Bao 40, 1105–1109 (2005). (in Chinese).

7. Liu, M., Nie, Q., Xin, X. & Geng, M. Chin. J. Ocenol. Limnol. 26, 394–399 (2008).

8. Wang, S., Li, J., Xia, W. & Geng, M. Neurol. Res. 29, 96–102 (2007).

9. Geng, M. Zhongguo Yao Li Tong Xun 24, 8 (2007). (in Chinese).

10. Guo, X., Geng, M. & Du, D. Biochem. Genet. 43, 175–187 (2005).

11. Hu, J. F., Geng, M. Y. & Zhang, J. T. Zhongguo Yao Li Xue Tong Bao 19, 12–16 (2003). (in Chinese).

12. Nie, Q., Du, X. & Geng, M. Acta Pharmacol. Sin. 32, 545–551 (2011).

13. Wang, S., Li, J. & Geng, M. Sheng Li Ke Xue Jin Zhan 36, 67–70 (2005). (in Chinese).

靜待後續。

參考文獻:

https://www.nature.com/articles/s41422-020-0344-3

本文來源:科研大匠綜合自Nature/科研大匠之前推文

轉載本文請聯繫原作者獲取授權,同時請註明本文來源。

相關文章